INTRODUCTION

Although the arterial blood pressure is measured many times a day by Health Care Professionals all over the world, few Health Care Professionals have devoted much thought to the problems and principles involved in measuring blood pressure accurately.

From the very beginning, a medical/nursing/paramedic student must learn to record the blood pressure properly. Accurate blood pressure recording will then become a habit that will remain with the Health Care Professionals for their lifetime.

This booklet is created to highlight the principles and use of Mercurial and Aneroid Sphygmomanometers in clinical or non-clinical settings. Health Care Professionals from all fields of medical science or technology will find the details very useful. This will further assist each Health Care Professional in exercising more control and interpret results more rationally.

WHAT IS BLOOD PRESSURE?

The arterial blood pressure is the lateral pressure, or force, exerted by the blood on a unit area of the blood vessel wall. The arterial blood pressure is constantly changing during the course of the cardiac cycle. The highest pressure in this cycle is the systolic blood pressure; the lowest is the diastolic blood pressure.

The numerical difference between the two is the pulse pressure. A typical blood pressure is expressed thus: 120/80 mm Hg.

A number of factors, acting in dynamic equilibrium and integrated through the central nervous system, determine the arterial blood pressure:

- Cardiac output
- Peripheral vascular resistance
- Volume of blood in the arterial system
- Viscosity of the blood
- Elasticity of the arterial walls

The exact contribution of each factor is not known, but peripheral resistance and cardiac output have the greatest influence on blood pressure.

BLOOD PRESSURE APPARATUS*

“Measuring arterial blood pressure with the sphygmomanometer is accurate, safe, and easy.” The manometers used have always been of the mercury-gravity or aneroid type, and both have been improved with time. Each consists of:

I. A pressure manometer
II. A compression cuff consisting of an inflatable rubber bladder enclosed within an inelastic covering
III. A pressure source consisting of a rubber hand bulb and pressure control valve.

The Mercury-gravity manometer consists of a straight glass tube in assembly with a reservoir containing mercury. The pressure chamber of the reservoir communicates with the compression cuff through a rubber tube. When pressure is exerted on the mercury in the reservoir it falls, and the mercury in the glass tube rises. Since the weight of the mercury is dependent upon gravity, which is constant, a given amount of pressure will always support a column of mercury of the same height in the straight tube of uniform diameter.

Once the mercury manometer is calibrated, recalibration is not really necessary, unless there has been a mercury spillage from the chamber. The mercury manometer is the traditional and most reliable instrument available for the clinical measurement of blood pressure. With the advent of Aneroid and Digital Blood Pressure Instruments, Mercury manometers have started to be noted for its poor safety due to accidental mercury spilling or leakage.

The Aneroid manometer consists of a metal bellows, the inside of which is connected to the compression cuff. Variations of pressure within the system cause the bellows to expand and collapse. Movement of the bellows rotates a gear that turns a pointer, pivoted on bearings, across a calibrated dial.

The adjustment of the mechanical system of the aneroid manometer may get disturbed. For this reason the aneroid manometer is checked alongside a mercury manometer at regular intervals.

The Compression Cuff consists of an inflatable rubber bladder within an inelastic covering. The compression cuff must be the correct width for the diameter of the patient’s arm. If it is too narrow, the blood pressure reading will be erroneously high; if too wide, the reading will be erroneously low.

Selections of CUFFS are provided by PROTON HEALTH CARE to ensure the Health Care Professional uses the appropriate cuff with each individual. Please ask your local dealer or PROTON representative to provide you with CUFF DETAILS.

The inflatable rubber bladder should be long enough to encircle at least half the limb. The center of the rubber bladder should rest over the artery being compressed. For the average adult, an inflatable bladder 12 cm (5.1 inches) wide and 23 cm (9.1 inches) long is generally satisfactory. The cuff should be clearly marked to show the range of limb circumferences for which it is intended.

The covering that encloses and encircles the inflatable bladder must be made of inextensible material and provide uniform compression over its full width. With a 12 cm wide bladder, the cuff should be 14 cm wide.

Table 1. Advantages and disadvantages of Mercury and Aneroid Sphygmomanometers

<table>
<thead>
<tr>
<th>Type</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury-Gravity</td>
<td>Great accuracy</td>
<td>Relatively bulky</td>
</tr>
<tr>
<td></td>
<td>Permanent accuracy</td>
<td>Breakable glass parts</td>
</tr>
<tr>
<td></td>
<td>Standard for pressure measurement</td>
<td>Most be kept in vertical position while in use</td>
</tr>
<tr>
<td></td>
<td>Easily replaceable parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does not require recalibration</td>
<td></td>
</tr>
<tr>
<td>Aneroid</td>
<td>Great Accuracy</td>
<td>Technical support required by provider for replacing parts if broken or damaged</td>
</tr>
<tr>
<td></td>
<td>Ease of portability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certified standards for use in hospitals and clinics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Available in variety of models for conventional use</td>
<td></td>
</tr>
</tbody>
</table>

The numerical difference between the two is the pulse pressure. A typical blood pressure is expressed thus: 120/80 mm Hg.

The Mercurial and Aneroid Sphygmomanometers

<table>
<thead>
<tr>
<th>Type</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury-Gravity</td>
<td>Great accuracy</td>
<td>Relatively bulky</td>
</tr>
<tr>
<td></td>
<td>Permanent accuracy</td>
<td>Breakable glass parts</td>
</tr>
<tr>
<td></td>
<td>Standard for pressure measurement</td>
<td>Most be kept in vertical position while in use</td>
</tr>
<tr>
<td></td>
<td>Easily replaceable parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does not require recalibration</td>
<td></td>
</tr>
<tr>
<td>Aneroid</td>
<td>Great Accuracy</td>
<td>Technical support required by provider for replacing parts if broken or damaged</td>
</tr>
<tr>
<td></td>
<td>Ease of portability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certified standards for use in hospitals and clinics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Available in variety of models for conventional use</td>
<td></td>
</tr>
</tbody>
</table>

TECHNIQUE OF MEASUREMENT

“In the everyday practice of medicine, a combination of the palpatory and auscultatory methods is used.”

1 - Application of the compression cuff

The blood pressure is generally recorded in the arm with the patient in a sitting or recumbent position. The Health Care Professionals should arrange his desk and chair or examining table so the patient’s right arm is always and inevitably presented for recording of the blood pressure. The arm should be abducted, slightly flexed, and supported by a smooth, firm surface. The artery over which the blood pressure is to be recorded should be at a level with the heart. It is not necessary for the manometer to be at heart level.

The deflated compression cuff is applied evenly and snugly, but without constriction, around the right arm. The lower edge of the cuff should be one inch above the point at which the bell of the stethoscope is to be placed.

2 - Palpatory Method

The radial or popliteal pulse is palpated and the rate and rhythm are noted. The compression cuff is then inflated to about 30 mm Hg above the pressure at which the radial pulse disappears. (When the cuff is inflated, it should not bulge nor become displaced.) The cuff is then deflated at a rate of 2 to 3 mm Hg per heartbeat. The level of pressure at which the pulse in the radial artery returns is noted and recorded as the systolic arterial blood pressure. The diastolic blood pressure is difficult to measure by palpation and is not generally determined by this method.

3 - Auscultatory Method

After the systolic blood pressure has been determined by the palpatory method, the blood pressure is then determined by auscultation over the artery at a point below the compression cuff, which has remained on the arm. The artery is first palpated, and then the bell of the stethoscope is applied lightly but snugly over it to produce an airtight seal. The bell must not come into contact with the patient’s clothing nor with the compression cuff. The compression cuff is then inflated rapidly to about 30 mm Hg above the systolic pressure as previously determined by the palpatory method. The cuff is then deflated at a rate of 2 to 3 mm Hg per heartbeat. While the Health Care Professionals is watching the meniscus of the mercury column, the pressure at which characteristic changes in the Korotkoff sounds occur is noted. From the changes in the quality of these sounds, the systolic and diastolic blood pressures are determined.

The systolic blood pressure

The pressure within the compression cuff indicated by the level of the mercury column at the moment the Korotkoff sounds are first heard represents the systolic blood pressure. This is the start of Phase 1 (Fig. 2) which begins with faint, clear and rhythmic tapping or thumping sounds that gradually increase in intensity.

The diastolic blood pressure

The pressure within the compression cuff indicated by the level of the mercury column at the moment the sound suddenly becomes muffled represents the first diastolic pressure (beginning of Phase 4). The second diastolic pressure is the pressure within the compression cuff at the moment the sounds finally disappear (beginning of Phase 5).

“Some Health Care Professionals consider the diastolic pressure to be equal to the pressure in the compression cuff at the moment the first sound of Phase 4 is heard. This has been found to be somewhat higher than the pressure recorded directly and simultaneously... Until more is known, it is advisable to record two diastolic pressures; the first at the onset of Phase 4 and the second upon the development of faint sounds in Phase 4 or at the moment of disappearance of the Korotkoff sounds. With experience and clinical judgment, serious errors in measuring diastolic blood pressure can usually be avoided.”

Summary

Steps in taking blood pressure

1. Snug application of compression cuff.
2. Palpation of radial artery as compression cuff is inflated.
3. Palpation of radial artery as cuff is deflated at 2 to 3 mm Hg per heartbeat.
5. Inflation of compression cuff above systolic pressure.
6. Deflation of cuff at a rate of 2 to 3 mm Hg per heartbeat to determine systolic and diastolic blood pressure.

“Regardless of the mechanism responsible for the production of the Korotkoff sounds and the pros and cons for employing the beginning of Phase 4 or of Phase 5 to measure diastolic pressure, the auscultatory method for obtaining arterial blood pressure is the clinical method par excellence. The wise, careful, and thoughtful Health Care Professionals will not make serious clinical errors in diagnosis and treatment if he uses the auscultatory method properly.”

SOURCES OF ERROR

“Errors that can be avoided in the clinical measurement of arterial blood pressure are committed not only by medical students, but also by Health Care Professionals.

So much of the technique for the measurement of blood pressure has been taken for granted that few Health Care Professionals have given much thought to the many problems concerned with sphygmomanometers.

The arterial pressure is fickle, and the ill-informed and unprepared Health Care Professionals is readily confused and his patient erroneously treated.

Therefore, to make the reading as accurate as possible, it is important to eliminate all sources of avoidable error.

The indirect method will then compare favorably with the direct method of measurement.”
In general, errors in blood pressure measurement are due to the following:

A - Faulty Technique

1 Improper positioning of the extremity. Whether the patient is sitting, standing, or supine the position of the artery in which the blood pressure is measured must be at the level of the heart. However, it is not necessary that the sphygmomanometer be at the level of the heart.

2 Improper deflation of the compression cuff. The pressure in the cuff should be lowered at about 2 mm Hg per heartbeat. At rates slower than this venous congestion will develop and the diastolic reading will be erroneously high. If the cuff is deflated too quickly, the column of mercury may fall 5 or 10 mm Hg between successive Korotkoff sounds, resulting in erroneously low readings.

3 Recording the first blood pressure. If proper habits, proper equipment, and proper techniques are used routinely in recording blood pressure, it will then be found that it is just as easy to record blood pressure accurately and reliably as it is to record it haphazardly and erroneously.

4 Failure to have the mercury column vertical. It is not necessary that the mercury column be at heart level, but the mercury column must be vertical. This applies especially when measuring the blood pressure of a patient in bed since the bed often does not provide a level surface.

5 Auscultatory gap. In some patients the Korotkoff sounds disappear as the pressure is lowered and reappear well above the diastolic pressure. This interval of silence is known as the “auscultatory gap.” Erroneously low systolic readings can be avoided by first recording the blood pressure by the palpatory method.

6 Improper application of the cuff. If the rubber bladder bulges beyond its covering, the pressure will have to be excessively high to compress the arm effectively. If the cuff is applied too loosely, central ballooning of the rubber bladder will reduce the effective width, thus creating a narrow cuff. Both bulging and ballooning result in excessively high readings.

“The importance of a smooth and even application of the compression cuff cannot be overemphasized.”

The Health Care Professionals should develop the habit of always applying the cuff properly. Hurried and careless application will result in inaccurate blood pressure determinations.

In many ways it would be better not to record the blood pressure at all than to allow an improperly recorded blood pressure to influence clinical judgment or to be entered as part of a patient’s record.

The insurance and legal implications of erroneously high blood pressure values are well known.”

B - Defective Apparatus

A defective air release valve or porous rubber tubing connections make it difficult to control the inflation and deflation of the cuff. The mercury and vertical glass tube should always be clean. If an aneroid manometer is used, its accuracy must be checked regularly against a mercury manometer. The needle should indicate zero when the cuff is fully deflated. However, an accurate zero reading is not a guarantee that the aneroid manometer is accurate throughout the entire pressure ranges.

SUMMARY

“Blood pressure values obtained by the indirect method can be as reliable and as consistent as those obtained by the direct method if the indirect blood pressures are recorded properly and a perfectly functioning manometer is used... The alert Health Care Professionals should be skeptical of any abnormal blood pressure values and should ask himself if any sources of error were present at the time of the determination. Only after he has made certain that the blood pressure was measured properly in all respects should he accept an abnormal blood pressure value as representative of the patient’s blood pressure.”

CONCLUSION

“Of the many objective procedures that Health Care Professionals employ to obtain quantitative data on their patients, none is used as often as the measurement of arterial blood pressure. The fact that every Health Care Professional, regardless of his specialty, records blood pressure repeatedly during the course of a day attests to the importance of the blood pressure determination and the reliance of the Health Care Professionals on the information it provides. Therefore, the importance of accurate blood pressure determinations cannot be over-emphasized.”

“If proper habits, proper equipment, and proper techniques are used routinely in recording blood pressure, it will then be found that it is just as easy to record blood pressure accurately and reliably as it is to record it haphazardly and erroneously.”

“REMEMBER - NO DATA IS BETTER THAN WRONG DATA”

This material had been developed in interest of customer training program by PROTON Healthcare Ltd. and downloaded from www.protonhealthcare.com

PROTON Healthcare Ltd.